[BETA] Unified File ID
Reuse the same 'file id' across different providers.
Feature | Description | Comments |
---|---|---|
Proxy | ✅ | |
SDK | ❌ | Requires postgres DB for storing file ids |
Available across all providers | ✅ |
Limitations of LiteLLM Managed Files:
- Only works for
/chat/completions
requests. - Assumes just 1 model configured per model_name.
Follow here for multiple models, batches support.
1. Setup config.yaml
model_list:
- model_name: "gemini-2.0-flash"
litellm_params:
model: vertex_ai/gemini-2.0-flash
vertex_project: my-project-id
vertex_location: us-central1
- model_name: "gpt-4o-mini-openai"
litellm_params:
model: gpt-4o-mini
api_key: os.environ/OPENAI_API_KEY
2. Start proxy
litellm --config /path/to/config.yaml
3. Test it!
Specify target_model_names
to use the same file id across different providers. This is the list of model_names set via config.yaml (or 'public_model_names' on UI).
target_model_names="gpt-4o-mini-openai, gemini-2.0-flash" # 👈 Specify model_names
Check /v1/models
to see the list of available model names for a key.
Store a PDF file
from openai import OpenAI
client = OpenAI(base_url="http://0.0.0.0:4000", api_key="sk-1234", max_retries=0)
# Download and save the PDF locally
url = (
"https://storage.googleapis.com/cloud-samples-data/generative-ai/pdf/2403.05530.pdf"
)
response = requests.get(url)
response.raise_for_status()
# Save the PDF locally
with open("2403.05530.pdf", "wb") as f:
f.write(response.content)
file = client.files.create(
file=open("2403.05530.pdf", "rb"),
purpose="user_data", # can be any openai 'purpose' value
extra_body={"target_model_names": "gpt-4o-mini-openai, gemini-2.0-flash"}, # 👈 Specify model_names
)
print(f"file id={file.id}")
Use the same file id across different providers
- OpenAI
- Vertex AI
completion = client.chat.completions.create(
model="gpt-4o-mini-openai",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What is in this recording?"},
{
"type": "file",
"file": {
"file_id": file.id,
},
},
],
},
]
)
print(completion.choices[0].message)
completion = client.chat.completions.create(
model="gemini-2.0-flash",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What is in this recording?"},
{
"type": "file",
"file": {
"file_id": file.id,
},
},
],
},
]
)
print(completion.choices[0].message)
Complete Example
import base64
import requests
from openai import OpenAI
client = OpenAI(base_url="http://0.0.0.0:4000", api_key="sk-1234", max_retries=0)
# Download and save the PDF locally
url = (
"https://storage.googleapis.com/cloud-samples-data/generative-ai/pdf/2403.05530.pdf"
)
response = requests.get(url)
response.raise_for_status()
# Save the PDF locally
with open("2403.05530.pdf", "wb") as f:
f.write(response.content)
# Read the local PDF file
file = client.files.create(
file=open("2403.05530.pdf", "rb"),
purpose="user_data", # can be any openai 'purpose' value
extra_body={"target_model_names": "gpt-4o-mini-openai, vertex_ai/gemini-2.0-flash"},
)
print(f"file.id: {file.id}") # 👈 Unified file id
## GEMINI CALL ###
completion = client.chat.completions.create(
model="gemini-2.0-flash",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What is in this recording?"},
{
"type": "file",
"file": {
"file_id": file.id,
},
},
],
},
]
)
print(completion.choices[0].message)
### OPENAI CALL ###
completion = client.chat.completions.create(
model="gpt-4o-mini-openai",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What is in this recording?"},
{
"type": "file",
"file": {
"file_id": file.id,
},
},
],
},
],
)
print(completion.choices[0].message)
Supported Endpoints
Create a file - /files
from openai import OpenAI
client = OpenAI(base_url="http://0.0.0.0:4000", api_key="sk-1234", max_retries=0)
# Download and save the PDF locally
url = (
"https://storage.googleapis.com/cloud-samples-data/generative-ai/pdf/2403.05530.pdf"
)
response = requests.get(url)
response.raise_for_status()
# Save the PDF locally
with open("2403.05530.pdf", "wb") as f:
f.write(response.content)
# Read the local PDF file
file = client.files.create(
file=open("2403.05530.pdf", "rb"),
purpose="user_data", # can be any openai 'purpose' value
extra_body={"target_model_names": "gpt-4o-mini-openai, vertex_ai/gemini-2.0-flash"},
)
Retrieve a file - /files/{file_id}
client = OpenAI(base_url="http://0.0.0.0:4000", api_key="sk-1234", max_retries=0)
file = client.files.retrieve(file_id=file.id)
Delete a file - /files/{file_id}/delete
client = OpenAI(base_url="http://0.0.0.0:4000", api_key="sk-1234", max_retries=0)
file = client.files.delete(file_id=file.id)
FAQ
1. Does LiteLLM store the file?
No, LiteLLM does not store the file. It only stores the file id's in the postgres DB.
2. How does LiteLLM know which file to use for a given file id?
LiteLLM stores a mapping of the litellm file id to the model-specific file id in the postgres DB. When a request comes in, LiteLLM looks up the model-specific file id and uses it in the request to the provider.
3. How do file deletions work?
When a file is deleted, LiteLLM deletes the mapping from the postgres DB, and the files on each provider.